Dodeca(dimethylamido)cyclohexaphosphonitrile as a Macrocyclic Ligand

By W. C. MARSH, N. L. PADDOCK,* C. J. STEWART, and J. TROTTER

(Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada)

Summary In the compound $[N_6P_6(NMe_2)_{12}CuCl]^+CuCl_2^-$, a 5-co-ordinated cupric ion is situated inside the 12membered ring, the slight weakening of the ring bonds to the co-ordinating nitrogen atoms being partially compensated by increased exocyclic electron release.

DIMETHYLAMIDOCYCLOPHOSPHONITRILES, like other phosphonitriles carrying electron-releasing groups,¹ form complexes with metal ions, and the complexes are especially stable if the size of the ring is great enough for it to act as a macrocyclic ligand. Dodeca(dimethylamido)cyclohexaphosphonitrile $N_6P_6(NMe_2)_{12}$ reacts with CuCl₂ and with CuC

FIGURE. General view of the $N_6P_6(NMe_2)_{12}CuCl^+$ ion. Mean standard deviations are 0.02 Å and 1.1°.

separately, and with an equimolar mixture of the two forms a bright orange complex $N_6P_6(NMe_2)_{12}Cu_2Cl_3$, which gives a conducting solution in acetonitrile.

Crystals of the complex are monoclinic, a = 19.352(8), b = 8.690(6), c = 14.069(7) Å, $\beta = 91.04(4)^{\circ}, Z = 2$, space group P2/n. The structure was determined with Mo- K_{α} diffractometer data from Patterson and electron-density maps; full-matrix least-squares refinement reduced R to 0.083 for 1103 observed reflections. The structure is ionic, and is formulated as [N₆P₆(NMe₂)₁₂Cu^{II}Cl]+Cu^ICl₂-. The CuCl₂- ion, hitherto unrecognised, is situated on a crystallographic C_2 axis and is linear, with Cu-Cl = 2.11(1) Å. The cation (Figure) is also situated on a crystallographic C_2 axis, and has Cu^{II} bonded to four nitrogen atoms of the phosphonitrilic ring and to one chlorine atom. The chlorine atom [obscured by Cu(2) in the Figure] can be regarded as occupying either the apical position of a distorted square pyramidor, since $\angle N(1)Cu(2)N(1')$ is large (160.9°) , an equatorial position of a distorted trigonal bipyramid; neither idealised configuration is uncommon for CuII. Distortion is also evident at the co-ordinated nitrogen atoms, the N-Cu(2) bonds being imperfectly aligned with the conventional lone pair directions.

The geometry of the ring shows several points of contrast with that of $N_6P_6(NMe_2)_{12}$ itself.² It can be regarded as being derived from a planar arrangement, which is folded about the $N(1) \cdots N(1')$ direction to give two approximately planar sections at a dihedral angle of 129°. Coordination tightens a ring already somewhat crowded in the uncomplexed state,² the mean angles at phosphorus and nitrogen being both reduced (Table; individual values are given in the Figure). The ring bond lengths are of two types, those from the co-ordinated nitrogen atoms being slightly longer (1.62 Å) than the others (1.55 Å), there being, as there is in complexes of $N_4P_4Me_8$,³ some tendency to bond localisation. The withdrawal of the lone pairs on Comparison of mean bond lengths and angles

		$N_{6}P_{6}(NMe_{2})_{12}B{B}$	$[N_6P_6(NMe_2)_{12}$ ·CuCl]+
Ring	P–N (Å)	1.563(10)	1.597(20)
"	NPN (degrees)	120.1(5)	107.5(11)
"	PNP (")	147.5(7)	$133 \cdot 6(13)$
Exocyclic P-N (Å)		1.669(10)	1.655(20)

* Reference 2. All standard deviations are of individual values.

the nitrogen atoms from the ring bonding system is partially compensated, as it is in N₃P₃Cl₂(NHPr¹)₄,HCl,⁴ by electron release from the exocyclic nitrogen atoms. The shortest exocyclic bond lengths are, as expected, P(1)N(4) and P(1)N(5), mean 1.63(1) Å. The distribution of bond length as a whole provides further support for the concept of interacting endocyclic and exocyclic π -systems in phosphonitriles.

(Received, July 21st, 1970; Com. 1203.)

¹T. Moeller and S. G. Kokalis, J. Inorg. Nuclear Chem., 1963, 25, 875; R. Rätz, E. Kober, C. Grundmann, and E. Ottman, Inorg. Chem., 1964, 3, 757; M. F. Lappert and G. Srivastava, J. Chem. Soc. (A), 1966, 210; J. Dyson and N. L. Paddock, Chem. Comm., 1966, 191.

- ⁹⁰⁰, 191.
 ² A. J. Wagner and A. Vos, *Acta Cryst.*, 1968, *B*24, 1423.
 ³ J. Trotter and S. H. Whitlow, *J. Chem. Soc.* (A), 1970, 455, 460.
 ⁴ N. V. Mani and A. J. Wagner, *Chem. Comm.*, 1968, 658.